f(x)在闭区间[ 0,c]上连续,其导函数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0。
结合题干简述拉格朗日中值定理的内容并证明;
运用拉格朗日中值定理证明不等式f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c。